 # Partial Differential Equations

59 rész ICTP Postgraduate Diploma Course in Mathematics - Lectures on Partial Differential Equations 01a Semi-inner and inner product space. (recorded 2011.02.09 at 14:00)
59 perc 59. rész 01b Semi-inner and inner product space. (recorded 2011.02.09 at 15:00)
59 perc 58. rész 02a Properties of l^2 space. (recorded 2011.02.10 at 09:00)
59 perc 57. rész 02b Properties of l^2 space. (recorded 2011.02.10 at 10:00)
59 perc 56. rész 03a Properties of l^2 space, Hilbert cube. (recorded 2011.02.11 at 09:00)
59 perc 55. rész 03b Properties of l^2 space, Hilbert cube. (recorded 2011.02.11 at 10:00)
59 perc 54. rész 04a Completion of a metric space. (recorded 2011.02.16 at 14:00)
59 perc 53. rész 04b Completion of a metric space.(recorded 2011.02.16 at 15:00)
59 perc 52. rész 05a Projection on a closed subspace of a Hilbert space. (recorded 2011.02.18 at 09:00)
59 perc 51. rész 05b Projection on a closed subspace of a Hilbert space. (recorded 2011.02.18 at 10:00)
59 perc 50. rész 06a Banach spaces. Linear operators on Banach spaces. (recorded 2011.02.23 at 14:00)
59 perc 49. rész 06b Banach spaces. Linear operators on Banach spaces. (recorded 2011.02.23 at 15:00)
59 perc 48. rész 07a The Riesz map. Hamel bases. Schauder bases. (recorded 2011.02.24 at 09:00)
59 perc 47. rész 07b The Riesz map. Hamel bases. Schauder bases. (recorded 2011.02.24 at 10:00)
24 perc 46. rész 08a Hilbert bases. Examples. (recorded 2011.02.25 at 09:00)
59 perc 45. rész 08b Hilbert bases. Examples. (recorded 2011.02.25 at 10:00)
59 perc 44. rész 09 On discontinuous linear operators. Hahn-Banach theorem, I. Norm preserving extension of a linear continuous operator. (recorded 2011.03.10 at 09:00)
59 perc 43. rész 10a The Hahn-Banach theorems, II. (recorded 2011.03.11 at 09:00)
59 perc 42. rész 10b The Hahn-Banach theorems, II. (recorded 2011.03.11 at 10:00)
59 perc 41. rész 11a Hahn-Banach theorems, III. (recorded 2011.03.16 at 14:00)
59 perc 40. rész 11b Hahn-Banach theorems, III. (recorded 2011.03.16 at 15:00)
59 perc 39. rész 12a Hahn-Banach theorems, IV. Banach-Steinhaus theorem. (recorded 2011.03.17 at 09:00)
59 perc 38. rész 12b Hahn-Banach theorems, IV. Banach-Steinhaus theorem. (recorded 2011.03.17 at 10:00)
59 perc 37. rész 13a The open mapping theorem. The closed graph theorem. (recorded 2011.03.18 at 09:00)
59 perc 36. rész 13b The open mapping theorem. The closed graph theorem. (recorded 2011.03.18 at 10:00)
59 perc 35. rész 14a The space of smooth functions with compact support: notion of convergence. Distributions. Criterion to be a distribution. Distributions representable by integration. (recorded 2011.03.23 at 14:00)
59 perc 34. rész 14b The space of smooth functions with compact support: notion of convergence. Distributions. Criterion to be a distribution. Distributions representable by integration. (recorded 2011.03.23 at 15:00)
59 perc 33. rész 15a Dirac delta. Principal value. Operations on distributions. (recorded 2011.03.24 at 09:00)
59 perc 32. rész 15b Dirac delta. Principal value. Operations on distributions. (recorded 2011.03.24 at 10:00)
59 perc 31. rész 16a Distributional derivative. Examples. Distributional laplacian of 1/|x| in R^3. (recorded 2011.03.25 at 09:00)
59 perc 30. rész 16b Distributional derivative. Examples. Distributional laplacian of 1/|x| in R^3. (recorded 2011.03.25 at 10:00)
59 perc 29. rész 17a Fundamental solution of a linear differential operator with constant coefficients. Examples: heat kernel. (recorded 2011.04.06 at 14:00)
59 perc 28. rész 17b Fundamental solution of a linear differential operator with constant coefficients. Examples: heat kernel. (recorded 2011.04.06 at 15:00)
59 perc 27. rész 18a Localization and support of a distribution. (recorded 2011.04.07 at 09:00)
59 perc 26. rész 18b Localization and support of a distribution. (recorded 2011.04.07 at 10:00)
59 perc 25. rész 19a On the support of a distribution. Convolution of distributions. Pull back of a distribution. (recorded 2011.04.08 at 09:00)
59 perc 24. rész 19b On the support of a distribution. Convolution of distributions. Pull back of a distribution. (recorded 2011.04.08 at 10:00)
59 perc 23. rész 20a The Fourier transform in L^1. Properties and examples. Fourier transform of e^{-|x|^2}. (recorded 2011.04.13 at 14:00)
59 perc 22. rész 20b The Fourier transform in L^1. Properties and examples. Fourier transform of e^{-|x|^2}. (recorded 2011.04.13 at 15:00)
59 perc 21. rész 21a Fourier transform and differentiation. On the inversion of the Fourier transform. (recorded 2011.04.14 at 09:00)
59 perc 20. rész 21b Fourier transform and differentiation. On the inversion of the Fourier transform. (recorded 2011.04.14 at 10:00)
59 perc 19. rész 22a Uncertainty principle. Rapidly decreasing functions: the Schwarz space. (recorded 2011.04.15 at 09:00)
59 perc 18. rész 22b Uncertainty principle. Rapidly decreasing functions: the Schwarz space. (recorded 2011.04.15 at 10:00)
59 perc 17. rész 23a Some properties of the Schwarz space. Fourier transform on the Schwarz space. Tempered distributions. (recorded 2011.04.20 at 14:00)
32 perc 16. rész 23b Some properties of the Schwarz space. Fourier transform on the Schwarz space. Tempered distributions. (recorded 2011.04.20 at 15:00)
59 perc 15. rész 24a The Fourier transform on tempered distributions. (recorded 2011.04.21 at 09:00)
59 perc 14. rész 24b The Fourier transform on tempered distributions. (recorded 2011.04.21 at 10:00)
59 perc 13. rész 25a Sobolev spaces with natural exponent. Characterization using the Fourier transform. Embedding in spaces C^k. (recorded 2011.04.27 at 14:00)
59 perc 12. rész 25b Sobolev spaces with natural exponent. Characterization using the Fourier transform. Embedding in spaces C^k. (recorded 2011.04.27 at 15:00)
59 perc 11. rész 26a Sobolev spaces with real exponent using the Fourier transform. Applications of the Fourier transform to linear elliptic PDEs. (recorded 2011.04.28 at 09:00)
59 perc 10. rész 26b Sobolev spaces with real exponent using the Fourier transform. Applications of the Fourier transform to linear elliptic PDEs. (recorded 2011.04.28 at 10:00)
59 perc 9. rész 27a Linear elliptic operators and Fourier transform. Poisson equation in the half-space. (recorded 2011.04.29 at 09:00)
59 perc 8. rész 27b Linear elliptic operators and Fourier transform. Poisson equation in the half-space. (recorded 2011.04.29 at 10:00)
59 perc 7. rész 28a Weak solutions of the non-homogeneous Poisson equation. Linear parabolic equations. The Cauchy problem and the Fourier transform. Qualitative properties of solutions. (recorded 2011.05.04 at 14:00
59 perc 6. rész 28b Weak solutions of the non-homogeneous Poisson equation. Linear parabolic equations. The Cauchy problem and the Fourier transform. Qualitative properties of solutions. (recorded 2011.05.04 at 15:00
59 perc 5. rész 29a Weak solutions of the non-homogeneous heat equation. The Cauchy problem for the wave equation. (recorded 2011.05.05 at 09:00)
59 perc 4. rész 29b Weak solutions of the non-homogeneous heat equation. The Cauchy problem for the wave equation. (recorded 2011.05.05 at 10:00)
59 perc 3. rész 30a Convolution and Fourier transform. Fundamental solutions. (recorded 2011.05.06 at 09:00)
59 perc 2. rész 30b Convolution and Fourier transform. Fundamental solutions. (recorded 2011.05.06 at 10:00)
59 perc 1. rész Speed: 